16034 Seminar

SoSe 13: The Notions of Space in Philosophy

Özge Ekin

Hinweise für Studierende

Preferably in English and with consent in German

Kommentar

The recent developments in computer sciences and programming made communication with visual tools easier and more desirable. One does not have to use only text but can create dynamic or static visual representations. These developments raised new questions about the validity of visual reasoning in sciences and with it the properties of space. Understanding, philosophically, the notions of space starting from Plato till Einstein will provide a pragmatic and efficient background for the re-evaluation of not only philosophy of science and philosophy of mathematics but also mathematics and physics. The aim of this course is to introduce key notions of space with a historical order and to understand the concept of space from a philosophical perspective. After considering ancient approaches to space, the modern notion of it will be presented. Based on the ancient and modern theories we will discuss Kant’s crucial characterizaiton of space and elaborate in detail how space become spaces with the discovery of non-Euclidean geometries. Finally we will discuss current approaches to the concept of space and connect the notions of space evaluated up to that point to the recent cognitive findings. The primary focus will be on the changing notions of space throughout history of philosophy and how these changing notions affect the practice of philosophy of its time. The course is offered in English, the papers and short written assignments (1-2 paragraphs each week) will be required, preferably in English and with consent in German. Schließen

Literaturhinweise

Primary: Aristotle 1983. Physics: Books III and IV. Edward Hussey (Trans.). USA: Oxford University Press. Marcus Giaquinto 2008. Visualizing in Mathematics". In Paolo Mancosu (Edt).The Philosophy of Mathematical Practice, Oxford University Press: 23-43. Veronique Izard et.al. 2011. Flexible intuitions of Euclidean geometry in an Amazonian indigene group. PNAS, 108(24):9782. Immanuel Kant 1998. Critique of Pure Reason. Cambridge: Cambridge University Gottfried Wilhelm Leibniz 1956. Philosophical Papers and Letters. Chicago: University of Chicago Press. Thomas Mormann (forthcoming-published online 2012). Topology as an Issue for History of Philosophy of Science in Thomas Uebel (ed.), The Philosophy of the Sciences that Received Philosophy of Science Neglected. Historical Perspectives. Springer. Isaac Newton 1966. Sir Isaac Newton’s Mathematical Principles of Natural Philosophy. Cajory, F. (Trans). Berkeley: University of California Print. Thomas Reid 1970. An Inquiry into the Human Mind. Chicago: Chicago University Press. Patrick Suppes 1977. Is Visual Space Euclidean? Synthese 35 (4): 397-421 Dordrecht: D Reidel Publishing Company Plato 2000. Timaeus. Zeyl, D. J. (Trans.). Indianapolis and Cambridge, Mass: Hackett Publishing. Secondary: Michael Friedman. 2012 "Kant on Geometry and Spatial Intuition". Synthese, Online First(1):Online First. Morris Kline 1980. Mathematics: The Loss of Certainty Oxford: Oxford University Press. John D. Norton 1992. "Introduction to the Philosophy of Space and Time," in M. H. Salmon et al., Introduction to the Philosophy of Science. Prentice-Hall:179-194. Lawrence P. Schrenk 1994. "Proclus on Corporeal Space" Archiv für Geschichte der Philosophie 76 (2): 151-167. Daniel Sutherland 2006. "Kant on Arithmetic, Algebra, and the Theory of Proportions". Journal of History of Philosophy, 44(4):53 Seminarplan für die Veranstaltung: The Notions of Space in Philosophy 1. Sitzung: Syllabus and discussion of the aims and objectives, requirements and important dates. 2. Sitzung: Space in Timaeus (Plato):48e-52d. 3. Sitzung: Space in Physics (Aristotle) Book IV,Delta. 4. Sitzung: The notion of space according to Proclus: Proclus on Corporeal Space. 5. Sitzung: Newton’s approach to space :Isaac Newton’s Mathematical Principles of Natural Philosophy: Scholium. 6. Sitzung: Leibniz’s approach to space: Philosophical Papers and Letters: Leibniz's third letter to Clarke. 7. Sitzung: Kantian characterization of space: Critique of Pure Reason: Metaphysical Exposition. With related commentaries from Friedman and Sutherland. 8. Sitzung: Kantian characterization of space: Critique of Pure Reason: Transcendental Exposition. With related commentaries from Friedman and Sutherland. 9. Sitzung: Non-Euclidean notion of space: Reid: An Inquiry into the Human Mind. Ch6. Sec. 7,8,9,10 (17 pages). 10. Sitzung: Non-Euclidean notion of space: Gauss, Poincaré, Sacchieri, Lambert: Mathematics: The Loss of Certainty (page numbers will be provided: App. 20 pages). 11. Sitzung: A new notion of space: Einstein: Introduction to the Philosophy of Space and Time pp. 179-194. 12. Sitzung: The notion of space and philosophy of science: “Topology as an Issue for History of Philosophy of Science. 13. Sitzung: Visual Space: Is Visual Space Euclidean? (pp. 397-421). 14. Sitzung: Visualizing in Mathematics: Visualizing in Mathematics" (pp. 23-43). 15. Sitzung: Which a priori properties can space have: A cognitive evaluation of our visualization of shapes: Flexible intuitions of Euclidean geometry in an Amazonian indigene group. Schließen

13 Termine

Regelmäßige Termine der Lehrveranstaltung

Do, 11.04.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 18.04.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 25.04.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 02.05.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 16.05.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 23.05.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 30.05.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 06.06.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 13.06.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 20.06.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 27.06.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 04.07.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Do, 11.07.2013 14:00 - 16:00

Dozenten:
Özge Ekin Gün

Räume:
Habel 30\SIR 2 Sitzungsraum (Habelschwerdter Allee 30)

Studienfächer A-Z