19037n
Seminar
SoSe 14: Seminar Homological Algebra
Elena Martinengo
Hinweise für Studierende
Vorbesprechung und austeilen der Vorträgsthemen am Montag, 14.04.2014
Zusätzl. Angaben / Voraussetzungen
Kommentar
Inhalt
The aim of the seminar is to define the cohomology of groups and study its properties. At first we will need some tools from basic (co)-homology theory and classical functor theory, that we will carry out through elementary and concrete examples.We will in particular focus on injective/projective resolutions of modules and on the Tor and Ext functors.We define the (co)-homology of a group G as the (co)-homology of the standard resolution of Z over Z[G], while the (co)-homology of a group G with coefficients in a Z[G]-module M will be defined using injective/projective resolutions and calculating the Tor and Ext groups. The functoriality properties of these derived functors will assure they are well defined, the existence of a long exact sequence of (co)-homology groups and some other functoriality properties.
Since we aim to remain concrete as much as possible, we will calculate a lot of examples: 0-groups and 1-groups (for trivial modules) are easy to be calculated and there are explict results of finite cyclic groups too.
Then the main three aims of the seminar are to explain the meaning of the cohomology of a group in terms of derivations, semidirect products and extensions with abelian kernel. We will develop this part presenting examples too. Depending on the audience we can decide the last topics. Schließen
Literaturhinweise
- M.F. Atiyah: I.G. Macdonald, Introduction to commutative algebra, Addison-Weseley, Reading, Mass. (1969).
- K. S. Brown: Cohomology of groups, Graduate Text in Mathematics, vol. 87, Springer-Verlag, New York (1994).
- P.J. Hilton: U. Stammbach: A course in Homological Algebra (Second Edition), Graduate Text in Mathematics, Vol.4, Springer Verlag (1996).
- C.A. Weibel: An introduction to homological algebra, Cambridge studies in advanced mathematics Vol.38, Cambridge University Press (1994).
- E. Weiss: Cohomology of groups. New York, Academic Press 1969. Schließen
- K. S. Brown: Cohomology of groups, Graduate Text in Mathematics, vol. 87, Springer-Verlag, New York (1994).
- P.J. Hilton: U. Stammbach: A course in Homological Algebra (Second Edition), Graduate Text in Mathematics, Vol.4, Springer Verlag (1996).
- C.A. Weibel: An introduction to homological algebra, Cambridge studies in advanced mathematics Vol.38, Cambridge University Press (1994).
- E. Weiss: Cohomology of groups. New York, Academic Press 1969. Schließen
12 Termine
Zusätzliche Termine
Mi, 09.04.2014 12:00 - 14:00 Do, 05.06.2014 16:00 - 18:00
Räume:
SR 005/A3 Seminarraum (Arnimallee 3-5)
Regelmäßige Termine der Lehrveranstaltung
Mo, 14.04.2014 12:00 - 14:00
Mo, 28.04.2014 12:00 - 14:00
Mo, 05.05.2014 12:00 - 14:00
Mo, 12.05.2014 12:00 - 14:00
Mo, 19.05.2014 12:00 - 14:00
Mo, 26.05.2014 12:00 - 14:00
Mo, 02.06.2014 12:00 - 14:00
Mo, 16.06.2014 12:00 - 14:00
Mo, 23.06.2014 12:00 - 14:00
Mo, 30.06.2014 12:00 - 14:00
Mo, 07.07.2014 12:00 - 14:00
Mo, 14.07.2014 12:00 - 14:00
Inhalt
The aim of the seminar is to define the cohomology of groups and study its properties. At first we will need some tools from basic (co)-homology theory and classical functor ... Lesen Sie weiter