19310201
Lecture
SoSe 16: ProInformatik I: Logik und Diskrete Mathematik
Paul Seiferth, Yannik Stein
Additional information / Pre-requisites
The registration for the course can only be done through the Proinformatik registration!
Comments
Contents:
- propositional logic and mathematical proof techniques
- Boolean terms and functions, DNF and CNF, satisfiability, resolution
- set theory: sets, relations, equivalence and order relations, functions
- natural numbers and induction, countability
- predicate logic and mathematical structures
- combinatorics: counting, binomial coefficients and Stirling numbers, recursion, pigeonhole principle
- discrete probability theory
- graph theory: graphs and their representation, paths and cycles, trees
Suggested reading
- Christoph Meinel, Martin Mundhenk: Mathematische Grundlagen der Informatik, Teubner; 2. Auflage 2002
- Uwe Schöning: Logik für Informatiker, B.I.-Wissenschaftsverlag; 5.Auflage 2000
- Kenneth H. Rosen: Discrete Mathematics and its Applications, Mc-Graw Hill; 1999
- M. Aigner: Diskrete Mathematk, Vieweg, 5. Auflage 2004
25 Class schedule
Additional appointments
Thu, 2016-09-22 16:00 - 18:00Nachklausur
Location:
T9/SR 005 Übungsraum (Takustr. 9)
Regular appointments
Mon, 2016-07-25 09:00 - 12:00
Tue, 2016-07-26 09:00 - 12:00
Wed, 2016-07-27 09:00 - 12:00
Thu, 2016-07-28 09:00 - 12:00
Fri, 2016-07-29 09:00 - 12:00
Mon, 2016-08-01 09:00 - 12:00
Tue, 2016-08-02 09:00 - 12:00
Wed, 2016-08-03 09:00 - 12:00
Thu, 2016-08-04 09:00 - 12:00
Fri, 2016-08-05 09:00 - 12:00
Mon, 2016-08-08 09:00 - 12:00
Tue, 2016-08-09 09:00 - 12:00
Wed, 2016-08-10 09:00 - 12:00
Thu, 2016-08-11 09:00 - 12:00
Fri, 2016-08-12 09:00 - 12:00
Mon, 2016-08-15 09:00 - 12:00
Tue, 2016-08-16 09:00 - 12:00
Wed, 2016-08-17 09:00 - 12:00
Thu, 2016-08-18 09:00 - 12:00
Fri, 2016-08-19 09:00 - 12:00
Mon, 2016-08-22 09:00 - 12:00
Tue, 2016-08-23 09:00 - 12:00
Wed, 2016-08-24 09:00 - 12:00
Thu, 2016-08-25 09:00 - 12:00
Fri, 2016-08-26 09:00 - 12:00
Contents:
propositional logic and mathematical proof techniques Boolean terms and functions, DNF and CNF, satisfiability, resolution set theory: sets, relations, equivalence and order ... read more