19301001
Lecture
SoSe 18: Linear Algebra for Computer Science
Klaus Kriegel
Additional information / Pre-requisites
The sign-up for the tutorial sessions will be announced in due time.
Comments
- linear algebra:
- vector space, basis and dimension;
- linear map, matrix and rank;
- Gauss-elimination and linear systems of equations;
- determinants, eigenvalues and eigenvectors;
- euclidean vector spaces and orthonormalization;
- principal component transformation;
- Applications of linear algebra in affine geometry, statistics, and coding theory (linear codes)
Suggested reading
- Klaus Jänich: Lineare Algebra, Springer-Lehrbuch, 10. Auflage 2004
- Dirk Hachenberger: Mathematik für Informatiker, Pearson 2005
- G. Grimmett, D. Welsh: Probability - An Introduction, Oxford Science Publications 1986
- Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1, Springer-Verlag, 6.Auflage 2001
- G. Berendt: Mathematik für Informatiker, Spektrum Akademischer Verlag 1994
- Oliver Pretzel: Error-Correcting Codes and Finite Fields, Oxford Univ. Press 1996
25 Class schedule
Additional appointments
Thu, 2018-07-19 16:00 - 19:00Klausur
Location:
Hs 1a Hörsaal (Habelschwerdter Allee 45)
Hs 1b Hörsaal (Habelschwerdter Allee 45)
T9/Gr. Hörsaal (Takustr. 9)
Nachklausur
Regular appointments
Tue, 2018-04-17 10:00 - 12:00
Tue, 2018-04-24 10:00 - 12:00
Tue, 2018-05-08 10:00 - 12:00
Tue, 2018-05-15 10:00 - 12:00
Tue, 2018-05-22 10:00 - 12:00
Tue, 2018-05-29 10:00 - 12:00
Tue, 2018-06-05 10:00 - 12:00
Tue, 2018-06-12 10:00 - 12:00
Tue, 2018-06-19 10:00 - 12:00
Tue, 2018-06-26 10:00 - 12:00
Tue, 2018-07-03 10:00 - 12:00
Tue, 2018-07-10 10:00 - 12:00
Tue, 2018-07-17 10:00 - 12:00
Thu, 2018-04-19 10:00 - 12:00
Thu, 2018-04-26 10:00 - 12:00
Thu, 2018-05-03 10:00 - 12:00
Thu, 2018-05-17 10:00 - 12:00
Thu, 2018-05-24 10:00 - 12:00
Thu, 2018-05-31 10:00 - 12:00
Thu, 2018-06-07 10:00 - 12:00
Thu, 2018-06-14 10:00 - 12:00
Thu, 2018-06-21 10:00 - 12:00
Thu, 2018-06-28 10:00 - 12:00
Thu, 2018-07-05 10:00 - 12:00
Thu, 2018-07-12 10:00 - 12:00