19202501
Vorlesung
WiSe 14/15: Algebra I (Kommutative Algebra)
Klaus Altmann
Hinweise für Studierende
Die Vorlesung Algebra I deckt auch die Inhalte der Vorlesung Zahlentheorie I ab.
Kommentar
Inhalt
This is the first part of a three semester course on algebraic geometry. Commutative algebra is the theory of commutative rings and their modules. It formally includes affine algebraic and local analytic geometry. Topics include: ● Affine algebraic varieties ● Rings, ideals, and modules ● Noetherian rings ● Local rings and localization ● Primary decompositione ● Finite and integral extensions ● Dimension theory ● Regular rings
Zielgruppe
Students with the prerequisites mentioned below.
Voraussetzungen
● Linear Algebra I+II ● Algebra and Number Theory
Literatur
● Atiyah, M.F.; Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp. (This book is probably the best entry to the subject. It is short, concise, and clearly written.)
● Further literature will be announced in class.
Homepage: Prof. Altmann Schließen
This is the first part of a three semester course on algebraic geometry. Commutative algebra is the theory of commutative rings and their modules. It formally includes affine algebraic and local analytic geometry. Topics include: ● Affine algebraic varieties ● Rings, ideals, and modules ● Noetherian rings ● Local rings and localization ● Primary decompositione ● Finite and integral extensions ● Dimension theory ● Regular rings
Zielgruppe
Students with the prerequisites mentioned below.
Voraussetzungen
● Linear Algebra I+II ● Algebra and Number Theory
Literatur
● Atiyah, M.F.; Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp. (This book is probably the best entry to the subject. It is short, concise, and clearly written.)
● Further literature will be announced in class.
Homepage: Prof. Altmann Schließen
32 Termine
Zusätzliche Termine
Di, 10.02.2015 14:00 - 16:00
Kommentar:
Klausur
Räume:
SR 031/A6 Seminarraum (Arnimallee 6)
Kommentar:
Nachklausur!
Räume:
Hs 001/A3 Hörsaal (Arnimallee 3-5)
Regelmäßige Termine der Lehrveranstaltung
Di, 14.10.2014 10:00 - 12:00
Di, 21.10.2014 10:00 - 12:00
Di, 28.10.2014 10:00 - 12:00
Di, 04.11.2014 10:00 - 12:00
Di, 11.11.2014 10:00 - 12:00
Di, 18.11.2014 10:00 - 12:00
Di, 25.11.2014 10:00 - 12:00
Di, 02.12.2014 10:00 - 12:00
Di, 09.12.2014 10:00 - 12:00
Di, 16.12.2014 10:00 - 12:00
Di, 06.01.2015 10:00 - 12:00
Di, 13.01.2015 10:00 - 12:00
Di, 20.01.2015 10:00 - 12:00
Di, 27.01.2015 10:00 - 12:00
Di, 03.02.2015 10:00 - 12:00
Di, 10.02.2015 10:00 - 12:00
Di, 14.10.2014 14:00 - 16:00
Di, 21.10.2014 14:00 - 16:00
Di, 28.10.2014 14:00 - 16:00
Di, 04.11.2014 14:00 - 16:00
Di, 11.11.2014 14:00 - 16:00
Di, 18.11.2014 14:00 - 16:00
Di, 25.11.2014 14:00 - 16:00
Di, 02.12.2014 14:00 - 16:00
Di, 09.12.2014 14:00 - 16:00
Di, 16.12.2014 14:00 - 16:00
Di, 06.01.2015 14:00 - 16:00
Di, 13.01.2015 14:00 - 16:00
Di, 20.01.2015 14:00 - 16:00
Di, 27.01.2015 14:00 - 16:00
Di, 03.02.2015 14:00 - 16:00
Di, 10.02.2015 14:00 - 16:00