21346
Vorlesung
WiSe 14/15: Laser und seine Anwendungen: vom Laserpointer zum Röntgen-FEL
Matthias Neeb
Hinweise für Studierende
für Studierende des Bachelor- und Master-Studienganges Chemie (ab 1. Fachsemester);
Leistungsnachweis: Klausur, 3 Leistungspunkte bei bestandener Prüfung. Am Ende der Vorlesung wird die Moeglichkeit der Besichtigung des BESSY-Synchrotron angeboten. Unverbindliche Anmeldung per E-Mail erbeten an neeb@bessy.de Schließen
Zusätzl. Angaben / Voraussetzungen
Vorbesprechung: 15.10.2014, 10 Uhr, SR 23.03 (Takustr. 3)
Kommentar
Kurzzusammenfassung der Vorlesung:
Laser bestimmen unseren Alltag: im Supermarkt, beim Drucken, beim Musikhören, bei der Kommunikation, beim Vermessen, beim Präsentieren, bei der Materialbearbeitung, und in der Medizin. Darüberhinaus werden in den modernen Labors von heute Hochleistungslaser genutzt, um mit extrem hohen Intensitäten bei sonst nicht erreichbaren elektrischen Feldstärken ganz neue Experimente zu machen. Die Entwicklung von Ultrakurzzeitlasern läßt photographische Schnappschüsse auf der Zeitskala von chemischen Reaktionen zu. Neuartige Konzepte der Beschleunigertechnologie und die Kombination mit der Femtosekunden-Lasertechnologie erlauben erstmals die Erzeugung von ultrakurzem, durchstimmbarem Röntgenlaserlicht, welches z.B. für die Strukturaufklärung von biologischen Substanzen und Nanopartikeln genutzt werden kann. Die kaum zu übersehende Vielfalt an Anwendungen und Laserarten ist Gegenstand der Vorlesung und vermittelt grundlegende Einblicke in die verschiedenen Lasertypen, gibt praktische Tipps für den Umgang mit Lasern im Labor und erklärt anhand von Beispielen das vielfältige Anwendungspotenzial von Lasern in Wissenschaft und Technik.
Inhaltsangabe
Vorlesung 1
Lasertypen:
Laser bestimmen unseren Alltag: im Supermarkt, beim Drucken, beim Musikhören, bei der Kommunikation, beim Vermessen, beim Präsentieren, bei der Materialbearbeitung, und in der Medizin. Darüberhinaus werden in den modernen Labors von heute Hochleistungslaser genutzt, um mit extrem hohen Intensitäten bei sonst nicht erreichbaren elektrischen Feldstärken ganz neue Experimente zu machen. Die Entwicklung von Ultrakurzzeitlasern läßt photographische Schnappschüsse auf der Zeitskala von chemischen Reaktionen zu. Neuartige Konzepte der Beschleunigertechnologie und die Kombination mit der Femtosekunden-Lasertechnologie erlauben erstmals die Erzeugung von ultrakurzem, durchstimmbarem Röntgenlaserlicht, welches z.B. für die Strukturaufklärung von biologischen Substanzen und Nanopartikeln genutzt werden kann. Die kaum zu übersehende Vielfalt an Anwendungen und Laserarten ist Gegenstand der Vorlesung und vermittelt grundlegende Einblicke in die verschiedenen Lasertypen, gibt praktische Tipps für den Umgang mit Lasern im Labor und erklärt anhand von Beispielen das vielfältige Anwendungspotenzial von Lasern in Wissenschaft und Technik.
Inhaltsangabe
Vorlesung 1
- Absorption und Emission von Licht (stimuliert, spontan,
- Schwellwertbedingung fur Verstarkung, spektrale Linienbreite)
- Einsteinkoeffizienten (A12, B12, B21)
- Laser-Resonator (Art, longitud. & transv. Moden, Grundmode TEM00)
- Strahlausbreitung (Gausstrahl, Strahltaille, Divergenz, M2, Strahlparameterprodukt)
- Fokussierung eines Gaus-Laserstrahls
Lasertypen:
- Mehr-Niveau-Laser: 2-,3-,4-Niveau-Laser
- Gaslaser (HeNe, Ar+, Excimer) ; IR-Laser (Molekullaser), Farbstofflaser (Dye)
- Festkorperlaser (Rubin; Nd:YAG; Ti:Sa)
- Diodenlaser (GaAs, GaN; indirekte u. direkte Bandlucke; Bauformen von Diodenlasern)
- Guteschaltung (Erzeugung leistungsstarker Lichtpulse im GW-Bereich): Doppelbrechung, Pockelszelle
- Frequenzvervielfachung (Nichtlineare Optik und Erzeugung hoherer harmonischer Frequenzen der Grundwelle)
- Dielektrische Laserspiegel
- Femtosekundenlaser (Modenkopplung; Wellenpakete, fs-Oszillator,
- Verstarker, Autokorrelation)
- Niedrigleistungsanwendungen von Lasern im kommerziellen Bereich (CD, Drucker, Scanner, Abstandsmessung, Datenubertragung/Photonik, Medizin, Materialbearbeitung)
- Laser-Sicherheitsklassen (Klasse 1-4); Kennzeichnung von Laser-Schutzbrillen Vorbesprechung zur Vorlesung PC2.2, LV 21346;
- Laser, Synchrotron und FEL: Grundlagen und Anwendungen
- Synchrotronlicht (Erzeugung u. Eigenschaften; Rontgenlicht; relativistische Elektronen, relativistischer Faktor ƒ×, Dipolstrahlung)
- Wiggler und Undulatoren; (Undulatorgleichung; Brillianz, K-Wert (Undulatorparameter/Ablenkparameter))
- Rontgen-Strahlrohre und Messplatze
- Freie-Elektronen-Laser FEL (Low-gain, High-Gain FEL¡¦s, Microbunching
- Allg. Ubersicht uber Anwendungen von Synchrotron- und FEL Strahlung Schließen
16 Termine
Regelmäßige Termine der Lehrveranstaltung
Mi, 15.10.2014 10:00 - 12:00
Mi, 22.10.2014 10:00 - 12:00
Mi, 29.10.2014 10:00 - 12:00
Mi, 05.11.2014 10:00 - 12:00
Mi, 12.11.2014 10:00 - 12:00
Mi, 19.11.2014 10:00 - 12:00
Mi, 26.11.2014 10:00 - 12:00
Mi, 03.12.2014 10:00 - 12:00
Mi, 10.12.2014 10:00 - 12:00
Mi, 17.12.2014 10:00 - 12:00
Mi, 07.01.2015 10:00 - 12:00
Mi, 14.01.2015 10:00 - 12:00
Mi, 21.01.2015 10:00 - 12:00
Mi, 28.01.2015 10:00 - 12:00
Mi, 04.02.2015 10:00 - 12:00
Mi, 11.02.2015 10:00 - 12:00