19202501
Lecture
WiSe 19/20: Basic Module: Algebra I
Alexandru Constantinescu
Comments
Content
This is the first part of a three semester course on algebraic geometry. Commutative algebra is the theory of commutative rings and their modules. It formally includes affine algebraic and local analytic geometry. Topics include:
- Affine algebraic varieties
- Rings, ideals, and modules
- Noetherian rings
- Local rings and localization
- Primary decompositione
- Finite and integral extensions
- Dimension theory
- Regular rings
Target Group
Students with the prerequisites mentioned below.
Prerequisites
- Linear Algebra I+II
- Algebra and Number Theory
Literature
- Atiyah, M.F.; Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp. (This book is probably the best entry to the subject. It is short, concise, and clearly written.)
- Further literature will be announced in class.
16 Class schedule
Additional appointments
Wed, 2020-02-12 12:00 - 14:00Klausur
Tue, 2020-06-30 09:00 - 11:00
Nachklausur (Klausur findet im L 115 Seminarzentrum statt)
Regular appointments
Mon, 2019-10-14 10:00 - 14:00
Mon, 2019-10-21 10:00 - 14:00
Mon, 2019-10-28 10:00 - 14:00
Mon, 2019-11-04 10:00 - 14:00
Mon, 2019-11-11 10:00 - 14:00
Mon, 2019-11-18 10:00 - 14:00
Mon, 2019-11-25 10:00 - 14:00
Mon, 2019-12-02 10:00 - 14:00
Mon, 2019-12-09 10:00 - 14:00
Mon, 2019-12-16 10:00 - 14:00
Mon, 2020-01-06 10:00 - 14:00
Mon, 2020-01-13 10:00 - 14:00
Mon, 2020-01-20 10:00 - 14:00
Mon, 2020-01-27 10:00 - 14:00
Mon, 2020-02-03 10:00 - 14:00
Mon, 2020-02-10 10:00 - 14:00