19234101 Lecture

WiSe 20/21: Ergodic theory and transfer operators

Péter Koltai

Additional information / Pre-requisites

Literature:

  • [Sa] Omri Sarig; Lecture Notes on Ergodic Theory (http://www.weizmann.ac.il/math/sarigo/sites/math.sarigo/files/uploads/ergodicnotes.pdf)
  • [BG] Abraham Boyarsky, Pawel Góra; Laws of Chaos. Springer Science+Business Media New York, 1997
  • [BS] Michael Brin and Garrett Stuck; Introduction to Dynamical Systems. Cambridge University Press, 2003
  • [LM] Andrzej Lasota and Michael C. Mackey; Chaos, Fractals, and Noise. Springer, 1994
  • [Wa] Peter Walters; An Introduction to Ergodic Theory. Springer, 1982
  • [Ma] Ricardo Mañé; Ergodic Theory and Differentiable Dynamics. Springer, 1983

See also the related course from the summer term 2015: http://numerik.mi.fu-berlin.de/wiki/SS_2015/ErgodicTheory.php

close

Comments

Ergodic theory in concerned with the behavior of dynamic systems on the long run, and provides statistical statements thereof. It delivers a statistical forecast for system, which are otherwise unpredictlable (e.g., chaotic or genuinely stochastic).

This course discusses the mathematical characterization of this situation. A central role is going to be played by the so-called transfer operator, which describes the action of the dynamics on a distribution of states. We are also going to highlight its importance in applications, when it comes to the numerical and data-driven approximation of quantities of interest.

 

close

Suggested reading

  • [Sa] Omri Sarig; Lecture Notes on Ergodic Theory
  • [BG] Abraham Boyarsky, Pawel Góra; Laws of Chaos. Springer Science+Business Media New York, 1997
  • [BS] Michael Brin and Garrett Stuck; Introduction to Dynamical Systems. Cambridge University Press, 2003
  • [LM] Andrzej Lasota and Michael C. Mackey; Chaos, Fractals, and Noise. Springer, 1994
  • [Wa] Peter Walters; An Introduction to Ergodic Theory. Springer, 1982
  • [Ma] Ricardo Mañé; Ergodic Theory and Differentiable Dynamics. Springer, 1983
close

15 Class schedule

Regular appointments

Tue, 2020-11-03 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2020-11-10 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2020-11-17 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2020-11-24 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2020-12-01 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2020-12-08 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2020-12-15 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-01-05 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-01-12 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-01-19 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-01-26 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-02-02 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-02-09 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-02-16 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Tue, 2021-02-23 10:00 - 12:00
Ergodentheorie und Transferoperatoren

Lecturers:
Univ.-Prof. Dr. Péter Koltai

Location:
Virtueller Raum 26

Subjects A - Z