WiSe 22/23: Linear Algebra I
Karin Schaller
Comments
Content:
- Basic terms/concepts: sets, maps, equivalence relations, groups, rings,
 - fields
 - Linear equation systems: solvability criteria, Gauss algorithm
 - Vector spaces: linear independence, generating systems and bases, dimension,
 - subspaces, quotient spaces, cross products in R3
 - Linear maps: image and rank, relationship to matrices, behaviour under
 - change of basis
 - Dual vector spaces: multilinear forms, alternating and symmetric bilinear
 - forms, relationship to matices, change of basis
 - Determinants: Cramer's rule, Eigenvalues and Eigenvectors
 
Prerequisites:
Participation in the preparatory course (Brückenkurs) is highly recommended.
close
Suggested reading
- Siegfried Bosch, Lineare Algebra, 4. Auflage, Springer-Verlag, 2008;
 - Gerd Fischer, Lernbuch Lineare Algebra und Analytische Geometrie, Springer-Verlag, 2017;
 - Bartel Leendert van der Waerden, Algebra Volume I, 9th Edition, Springer 1993;
 
Zu den Grundlagen
- Kevin Houston, Wie man mathematisch denkt: Eine Einführung in die mathematische Arbeitstechnik für Studienanfänger, Spektrum Akademischer Verlag, 2012
 
47 Class schedule
Additional appointments
Wed, 2023-02-08 14:00 - 16:00
              
                Location:
                
              
                  HFB/C Hörsaal (Garystr. 35-37)                              
              
                Location:
                
              
                  HFB/B Hörsaal (Garystr. 35-37)                              
              
                Location:
                
              
                  Gr. Hörsaal (Raum B.001) (Arnimallee 22)                              
              
                Location:
                
              
                  Hs B (Raum B.004, 100 Pl.) (Arnimallee 22)                              
Regular appointments
