19216601
Vorlesung
SoSe 15: Heterogeneous multiscale methods
Ralf Kornhuber
Zusätzl. Angaben / Voraussetzungen
Requirements
Basic knowledge on numerical methods for ordinary and partial differential equations as commuinicated in Numerik II and III ar Freie Universität.
Basic knowledge on numerical methods for ordinary and partial differential equations as commuinicated in Numerik II and III ar Freie Universität.
Kommentar
Content:
The heterogeneous multiscale method (HMM) is a well-established approach to describe and numerically approximate processes involving subprocesses on (two) different scales in space/and or time. Crack problems coupling continuum mechanics and classical molecular dynamics are typical examples. In this lecture, we will describe the general idea and its realization for several special cases and investigate relations of HMM to multigrid methods. Schließen
The heterogeneous multiscale method (HMM) is a well-established approach to describe and numerically approximate processes involving subprocesses on (two) different scales in space/and or time. Crack problems coupling continuum mechanics and classical molecular dynamics are typical examples. In this lecture, we will describe the general idea and its realization for several special cases and investigate relations of HMM to multigrid methods. Schließen
Literaturhinweise
Literatur:
Assyr. Abdulle et al.: The hereogeneous multiscale method. Acta Numerica, pp. 1-87 (2012)
Achi Brandt: Multiscale scientific computation: Review 2001’, in: Multiscale and Multiresolution Methods: Theory and Applications, T.J. Barth et al. (eds.) Springer Lect. Notes Comput. Sci. Eng. 20, pp. 3–96 (2002),
Weinan E: Principles of Multiscale Modeling. Cambridge University Press (2011)
Harry Yserentant: Old and new convergence proofs of multigrid methods. Acta Numerica, pp. 285-326 (1993) Schließen
Assyr. Abdulle et al.: The hereogeneous multiscale method. Acta Numerica, pp. 1-87 (2012)
Achi Brandt: Multiscale scientific computation: Review 2001’, in: Multiscale and Multiresolution Methods: Theory and Applications, T.J. Barth et al. (eds.) Springer Lect. Notes Comput. Sci. Eng. 20, pp. 3–96 (2002),
Weinan E: Principles of Multiscale Modeling. Cambridge University Press (2011)
Harry Yserentant: Old and new convergence proofs of multigrid methods. Acta Numerica, pp. 285-326 (1993) Schließen
13 Termine
Regelmäßige Termine der Lehrveranstaltung
Do, 16.04.2015 14:00 - 16:00
Do, 23.04.2015 14:00 - 16:00
Do, 30.04.2015 14:00 - 16:00
Do, 07.05.2015 14:00 - 16:00
Do, 21.05.2015 14:00 - 16:00
Do, 28.05.2015 14:00 - 16:00
Do, 04.06.2015 14:00 - 16:00
Do, 11.06.2015 14:00 - 16:00
Do, 18.06.2015 14:00 - 16:00
Do, 25.06.2015 14:00 - 16:00
Do, 02.07.2015 14:00 - 16:00
Do, 09.07.2015 14:00 - 16:00
Do, 16.07.2015 14:00 - 16:00