19216401
Vorlesung
SoSe 15: Inside Finite Elements
Martin Weiser
Zusätzl. Angaben / Voraussetzungen
Zielgruppe:
Studierende der Mathematik oder Informatik im Hauptstudium.
Voraussetzungen sind Grundkenntnisse der Numerik von Differentialgleichungen.
Perspektiven: Master- und Doktorarbeit mit Einbindung in Forschungsarbeiten am Zuse-Institut Berlin Schließen
Voraussetzungen sind Grundkenntnisse der Numerik von Differentialgleichungen.
Perspektiven: Master- und Doktorarbeit mit Einbindung in Forschungsarbeiten am Zuse-Institut Berlin Schließen
Kommentar
Content
All relevant implementation aspects of finite element methods for scalar elliptic problems are discussed in this course. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is only covered as far as it gives insight into the construction of algorithms. Depending on the participants' interests, either adaptive mesh refinement and multigrid solvers, or more complex problems from fluid dynamics and elastomechanics can be treated. In the exercises, a complete FE-solver for 2D problems will be implemented in Matlab/Octave. Depending on the preferences of the participants, the course can be given in English or German. Schließen
All relevant implementation aspects of finite element methods for scalar elliptic problems are discussed in this course. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is only covered as far as it gives insight into the construction of algorithms. Depending on the participants' interests, either adaptive mesh refinement and multigrid solvers, or more complex problems from fluid dynamics and elastomechanics can be treated. In the exercises, a complete FE-solver for 2D problems will be implemented in Matlab/Octave. Depending on the preferences of the participants, the course can be given in English or German. Schließen
Literaturhinweise
Literatur:
P. Deuflhard, M. Weiser: Adaptive Numerical Solution of PDEs. de Gruyter. 2012.
C. Grossmann, H.-G. Roos: Numerische Behandlung partieller Differentialgleichungen
D. Braess: Finite Elemente
J.-L. Guermond, A. Ern: Theory and Practice of Finite Elements
J. Fish, T. Belytschko: A First Course in Finite Elements
C. Johnson: Numerical Solution of Partial Differential Equations by the Finite Element Method
H.R. Schwarz: Finite Element Methods Schließen
P. Deuflhard, M. Weiser: Adaptive Numerical Solution of PDEs. de Gruyter. 2012.
C. Grossmann, H.-G. Roos: Numerische Behandlung partieller Differentialgleichungen
D. Braess: Finite Elemente
J.-L. Guermond, A. Ern: Theory and Practice of Finite Elements
J. Fish, T. Belytschko: A First Course in Finite Elements
C. Johnson: Numerical Solution of Partial Differential Equations by the Finite Element Method
H.R. Schwarz: Finite Element Methods Schließen
12 Termine
Regelmäßige Termine der Lehrveranstaltung
Mo, 20.04.2015 16:00 - 18:00
Mo, 27.04.2015 16:00 - 18:00
Mo, 04.05.2015 16:00 - 18:00
Mo, 11.05.2015 16:00 - 18:00
Mo, 18.05.2015 16:00 - 18:00
Mo, 01.06.2015 16:00 - 18:00
Mo, 08.06.2015 16:00 - 18:00
Mo, 15.06.2015 16:00 - 18:00
Mo, 22.06.2015 16:00 - 18:00
Mo, 29.06.2015 16:00 - 18:00
Mo, 06.07.2015 16:00 - 18:00
Mo, 13.07.2015 16:00 - 18:00